Matriks dan Ruang Vektor : Properti dalam Determinan dan Cramer's Rule ( Aturan Cramer )

Matriks dan Ruang Vektor : Properti dalam Determinan, Adjoint, dan Cramer's Rule ( Aturan Cramer )


Properties of Determinant

Suppose that A and B are n×n matrices and k is any scalar 
  • det⁡(kA)=k^n det⁡(A) 
  • det⁡(A+B)≠det⁡(A)+det⁡(B) 
  • det⁡(AB)=det⁡(A) det⁡(B) 

Theorem : 


A square matrix A is invertible if and only if det⁡(A) ≠ 0


If A is invertible, then



Adjoint

If A is any n×n matrix and C_ij is the cofactor of a_ij, then the matrix



Is called the matrix of cofactors from A. The transpose of this matrix is called the adjoint of A ( denoted : adj(A) )

Example : 


Note that :



The adjoint of A is



Inverse of a Matrix Using Its Adjoint



If A is an invertible matrix, then


Example : 


det⁡(A) = 64. Thus,



Cramer’s Rule


Use Cramer’s rule to solve



Equivalent Statement


Sumber


Slide Materi MRV : Determinants in Matrices

Post a Comment

Lebih baru Lebih lama